THE BRAIN IMPRINT OF ATTENTION AND ITS FIGHT AGAINST THE DISTRACTING EFFECT OF PAIN.

Dr. Victor Tortorici

Summary

The main objective of this article is to share the results of a pilot experience carried out at the recently created Neuroscience Laboratory of UNIMET, in an effort to try to understand the complex relationship between pain and cognitive performance, particularly with regard to the maintenance of attentional capacity despite our suffering.

Abstract

The main goal of this article is to share the results of a pilot study carried out in the recently created Neuroscience Laboratory of UNIMET to understand the complex relationship between pain and cognitive performance, particularly in the maintenance of attentional capacity despite suffering.

* Dr. Tortorici is a Biologist and Neurophysiologist. He holds a PhD in Physiology and Biophysics (Magna Cum Laude) from the Instituto Venezolano de Investigaciones Científicas (IVIC). He completed three postdoctorates in Neurophysiology, the first one at the Instituto Venezolano de Investigaciones Científicas (IVIC), in Venezuela, and the others at Oregon Health and Sciences University (OHSU) and Washington State University (WSU), both located in the United States. He is Active Emeritus Researcher, head of the Neurophysiology Laboratory at the Center for Biophysics and Biochemistry (CBB) of IVIC. He was head of the CBB of that institute and president of the Venezuelan Association for the Study of Pain (AVED). He is currently a Full Research Professor in the Department of Behavioral Sciences at the Universidad Metropolitana (UNIMET), where he also directs the Neuroscience Laboratory.
Let us consider, to begin with, a hypothetical situation in which someone challenges us to complete a puzzle of medium difficulty in no more than 20 minutes. Let us now think about what would happen if the person who has challenged us connects a pair of electrodes in some region of the body and randomly stimulates us electrically with an unpleasant level of current, so much so that it generates a certain degree of pain. Under these new conditions, how long would it now take us to complete the puzzle? Most of us would probably answer that it would take us longer, because the pain would distract us from our original goal (completing the puzzle).

But it happens that not all people respond in the same way to pain, even when stimulated in the same way. As logical as the interference generated by the application of a noxious stimulus may be, we may find that people use cognitive distraction, which in our example involves completing the puzzle, to distract themselves from distressing pain. Moreover, it is possible that such people may be able to complete the task in less time and more efficiently while in pain. It all depends on how the body responds to the noxious stimulus; that is, how well we can “cope” with our pain.

What is pain?

According to the most recent definition proposed by the International Association for the Study of Pain (IASP) (Raja et al., 2020), pain is an unpleasant sensory and emotional experience associated with, or similar to that associated with, actual or potential tissue damage. Implicit in this definition are several considerations, including:

- Pain is a personal experience that is influenced to varying degrees by biological, psychological and social factors.
- Pain is not only the consequence of increased activity of sensory neurons, which are responsible for transmitting the message generated by the application of a noxious stimulus.
- A person’s life experiences determine, in part, how he or she will be able to respond to the same pain again.
- Although pain often has an adaptive role, warning us of something that may threaten our integrity, it can also have adverse effects on psychological and social function and well-being.
e. Verbal description is only one of several behaviors to express pain. However, the inability to communicate does not negate the possibility that a human being, or a nonhuman animal, may experience pain. This is particularly important when considering pain patients who are cognitively impaired.

Let us now consider how the sensation of pain is produced. When a noxious stimulus is applied to a region of the body, or when some pathological condition causes pain, a series of specific receptors called nociceptors are activated in the area of origin and as a consequence of this activation an electrochemical message is generated (a train of action potentials), which progressively advances through a series of relay stations, which include among other areas the spinal cord, the brain stem and the thalamus, until finally this information reaches different regions of the cerebral cortex. There, as a product of an interaction between these different cortical locations, a conscious decision is made as to what to do with the pain.

In addition to the succession of structures described above, also known collectively as the pain transmission pathway, other nerve structures are activated in parallel in an attempt to endogenously control pain. Some of these structures even guide our ability to pay attention, or not, to pain (Figure 1). The latter is of great importance, since the regions responsible for the achievement of attention and those that modulate the intensity of the pain we can perceive have common elements, which raises the strategic possibility of establishing joint regulatory actions. In other words, pain and cognition share neural substrates and can therefore interact reciprocally. Put differently, pain may negatively affect cognitive processing, but a cognitively demanding task may eventually reduce pain perception (Moriarty & Finn, 2014). The latter is known as the cognitive modulation of pain and is posited as a mechanism that can coadjuvant with pharmacological therapy to improve the quality of life of pain patients, particularly those who are affected by chronic type pain (with more than three months of installation). All these structures work together to create the so-called pain experience, which will have particular nuances according to each person. The sensitivity and efficiency of these neural circuits will determine how much and how a person can react to pain. This is why some individuals may manifest more pain than others, or even develop forms of chronic pain that may be insensitive to more traditional pharmacological therapies.
Figure 1.

Neural pathways involved in pain processing and attention. Note the convergence of the different pathways at the mesencephalic level (circle), which justifies the possibility of a cognitive modulation of pain. Modified from: Bushnell et al., 2013.

Treatment

There are different ways to treat pain, some of them using different structures of the nerve pathways described above as therapeutic targets. Among the available options are over-the-counter medications, which are mainly used to treat low to moderate pain. Such drugs are usually indicated to act at the site where the pain signal originates (although they also act at the central nervous system level). Other stronger drugs, and even some anesthetics, act by reducing activity in the pain pathway, or by increasing the capacity of the endogenous modulatory circuit. This group includes, for example, opioid drugs, the sale of which is regulated globally. Some people also use other methods such as distraction, relaxation, meditation, yoga, or therapies
that involve the cognitive aspect, modifying, among other things, the attention span we devote to pain.

In the recently created Neuroscience Laboratory at UNIMET, studies are being carried out to contribute to a better definition of the mechanisms involved in the cognitive modulation of pain. In essence, the aim is to try to better understand how our brain functions under pain conditions. The following paragraphs summarize the results of a pilot experience carried out with the first equipment that is part of our inventory, an experience that we plan to expand significantly in the short and medium term.

The cognitive challenge is carried out through a test of the so-called NIH Toolbox, developed by the National Institutes of Health (NIH) (Gershon et al., 2013; Hoodes et al., 2013). This toolbox has different tests of the cognitive domain, in Spanish language and works electronically in an iPad environment, which not only facilitates the work of information processing, but also invites our participants to act in a playful way in the evaluation, thus generating greater empathy towards the procedure.

In particular, we are evaluating the effect on pain perception of the working memory test called Picture sequence memory test, which is cognitively demanding and involves the presentation, at two different times, of sequences of pictures related to a life condition. Because the cognitive test is presented in two phases, it allows us to use one of them experimentally (during the application of the noxious electrical stimulus), and the other as a control (during the application of a harmless electrical stimulus that is even pleasant). So far all our participants have been healthy, male subjects, aged 18-25 years, students at UNIMET, who have cooperated with the study on a voluntary basis. It is among our immediate plans to incorporate female participants for comparative purposes.

The consequences of the application of the NIH Toolbox cognitive test were evaluated by using a headband called Mind Wave Mobile 2, from Neurosky, which is a tool used to detect electroencephalography signals in a portable manner. The headband consists of an electrode placed in the left frontopolar position (FP1 position, according to the international 10-20 system), which has been qualified as ideal for the electrophysiological observation of higher cognitive processes, including memory, attention and relaxation, through the use of a series of specific algorithms.
Figure 2.

Experimental setup involved in the study. The upper part shows the headband used for electrophysiological recording, the Numerical Pain Scale and the electrodes placed on the participant’s forearm, through which the electrical stimulation was applied. The lower part shows the participant running the cognitive test on the iPad screen with his dominant hand. The brain activity can also be seen on the laptop screen, recorded through the use of the headband.

The signals obtained were processed with the open architecture Lucid Scribe program from LUCIDCODE. Among its capabilities are the ability to detect the establishment of an “attentional focus” during the performance of tasks involving intense concentration, as well as the recording of brain waves of different frequencies. In this way, it was also possible to evaluate the effect of the application of stimuli that act as distractors, altering the focus of attention, or generating anxiety (such as occurs during situations of pain).

A portable Transcutaneous Electrical Nerve Stimulation (TENS) device, iStim TENS ev-820, was used to generate the noxious stimulus. Two self-adherent stimulation electrodes (iSTIM,
TKF5050 DE 2 “X2”) fueron colocados en la región del antebrazo correspondiente a la mano no dominante de cada participante, a una distancia de 10 cm. El patrón de estimulación utilizado fue el modo continuo, con anchura de pulso de 200 µs, frecuencia de pulso entre 30-50 Hz. Antes de comenzar el test cognitivo, se determinó el umbral de dolor para cada participante. Para este fin, la intensidad de estimulación fue progresivamente aumentada hasta que el primer reporte verbal de dolor fue escuchado por el sujeto. Este valor detectado se aumentó en un 10% para alcanzar valores de estimulación supraumbral. Esto se realiza con frecuencia para evitar, entre otros, la inducción de tolerancia al dolor durante las pruebas cognitivas. Las características de la estimulación nociva fueron ajustadas para evitar eventos secundarios indeseados y fueron pretestadas en la antebrazo del investigador para verificar la calidad de la estimulación. El tiempo de estimulación varió entre 5 y 10 min, dependiendo de la velocidad de respuesta de cada participante durante la realización del test cognitivo.

La intensidad del dolor fue determinada utilizando la denominada Escala Numérica de Dolor (NPS; Downie et al., 1978), que es una escala que varía desde 0 a 10, donde 0 representa la ausencia total de dolor y 10 la máxima intensidad imaginable.

Para realizar el test cognitivo y evaluar su efecto en términos de dolor percibido, cada participante fue cómodamente sentado en una silla frente a una mesa en la que se colocó un iPad con el test cognitivo listo para iniciar la secuencia de actividades. En este momento, el umbral de dolor ya había sido determinado, pero las electrodos de estimulación electrocutánea se mantuvieron en posición, en conexión con el control del equipamiento de TENS. Luego, el sujeto fue provisto con la banda para el cabello y se comprobó la estabilidad de la grabación de ondas cerebrales en una computadora portátil (HP Pavilion Gaming, NVIDIA GTX 950M procesador) (Figura 2). En particular, nos enfocamos en la grabación del ritmo alfa (8-12 Hz), un indicador de relajación, así como el ritmo beta (13-30 Hz), un indicador de un mayor nivel de procesamiento cognitivo, y la curva reflejando el grado de atención del participante (basado en los algoritmos del programa Lucid Scribe).

Cuando todo estuvo listo, el test fue formalmente iniciado, para lo cual la estimulación eléctrica y el test cognitivo fueron activados simultáneamente. En el caso del control, se mantuvieron todas las condiciones descritas anteriormente, excepto por la intensidad de estimulación eléctrica, que fue reducida en un 70%, para generar un efecto masajístico suave y agradable en el antebrazo de cada participante.

Antes de comenzar el experimento, cada sujeto fue informado de la naturaleza del test. Si, después de recibir esta explicación, aún deseaban participar, se les solicitó llenar un formulario de consentimiento informado, que fue preparado de conformidad con las guías bioéticas nacional e internacional. Asimismo, se verificó si los participantes superaban nuestras condiciones de exclusión, entre ellas: consumo de analgésicos, historial de crisis epilépticas y/o desmayos, fatiga, presión arterial inestable y el uso de un marcapasos. En todo momento, el participante tuvo el derecho de abandonar el test si lo deseaba, sin penalización.
The data obtained were analyzed using the GraphPad Prism 8 statistical package (GraphPad Software). Initially, a descriptive study of the variables was performed to determine the mean and standard error of the sample under each experimental condition. Then, the results were processed with nonparametric statistics, considering the sample size (n=5), since this was a pilot study to evaluate the feasibility of the research paradigm. The Mann-Whitney U test was then used to establish possible differences between the two experimental conditions. A level of statistical significance was recognized at a value of p≤0.05.

The results so far obtained show that in all participants of this pilot experience a significant improvement (p≤0.05) in cognitive performance occurs while applying noxious electrical stimulation on their forearms.

<table>
<thead>
<tr>
<th>Prueba de secuencia epídode de imágenes de la batería cognitiva del NIH Toolbox</th>
<th>Puntaje Durante Prueba (MÉDIA±SEM)</th>
<th>Número de Participantes</th>
<th>ESCALA NUMÉRICA DEL DOLOR - 2ND (MÉDIA±SEM)</th>
<th>Significación Estadística</th>
<th>Representación Gráfica del Efecto Observado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primera parte del ensayo con estimulación eléctrica inútil</td>
<td>17/31 (0,55±0,46)</td>
<td>n=5</td>
<td>1,13±0,23</td>
<td>p≤0,05</td>
<td></td>
</tr>
<tr>
<td>Segunda parte del ensayo con estimulación eléctrica acústica</td>
<td>24/31 (0,77±0,13)</td>
<td>n=5</td>
<td>7,42±0,12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.

Characterization of the pilot experience. The table shows a summary of the results obtained when administering the cognitive test during electrical stimulation on the forearm of the participants. It details the results achieved in the NIH Toolbox episodic image sequence test, the number of participants in the trials, the intensity of pain referred by the participants at the conclusion of the electrical stimulation (so as not to interfere with the test), the level of statistical significance obtained by applying the Mann Whitney U test and a graph indicating the changes achieved in terms of cognitive performance.

Such improvement in cognitive performance was accompanied by a decrease in the alpha rhythm (indicative of less relaxation), a progressive increase in the beta rhythm (suggestive of a higher level of processing) and a sustained increase in the level of attention, perhaps trying to resist the distracting effect of pain. However, once a certain point in the experiment was reached, a significant decrease in the level of cognitive processing was observed (Figure 3), probably due to the fact that from that point onwards the pain being experienced exceeds the participant's capacity for tolerance and again diverts attention to the pain perceived earlier than in the test being performed, as expressed verbally by some of our participants at the conclusion of the trial.
Figure 3.

Linkage of the variables under study. The image represents the recording obtained from one of the participants. It shows that at the beginning of the noxious electrical stimulation, the level of alpha activity (indicative of less relaxation) begins to decrease, while the level of beta activity (indicative of greater cognitive processing) and the degree of attention progressively increase. After a certain time, the convergence between attention and cognitive processing is lost, which could be due to the participant’s pain tolerance level being exceeded.

Conclusions

In conclusion, these preliminary results suggest that a level of cognitive challenge of some complexity may be able to promote pain tolerance, which in this case resulted from the application of an acute noxious stimulus. Additionally, the change in the recording pattern of brain rhythms seems to correlate, to some extent, congruently with the changes in attention and processing level observed during the execution of the cognitive tests, pointing to improved performance. However, it is required to enlarge the experimental sample size and to consider the effect of repeating the exposure to the memory test scenario, in order to establish more definitive conclusions, which would allow affirming the possible therapeutic potential of this type of cognitive intervention and even verify the consequences of a learning process as a consequence of duplicating the experience.
Bibliography:

Related websites:

Current definition of pain:
https://www.iasp-pain.org/terminology?navItemNumber=576#Pain

How your brain responds to pain:
https://www.youtube.com/watch?v=l7wFDenj6CQ

The NIH Toolbox:

Mind Wave Mobile 2:
https://store.neurosky.com/pages/mindwave

System 10-20:
https://en.wikipedia.org/wiki/10%28%20system_(EEG)

Lucid Scribe:
https://lucidcode.com/lucidscribe/

TENS device iStim TENS ev-820:
http://www.istim.com/products/istim-820